CSAPP_CHAPTER_2_HOMEWORK 2.55 见2.56 2.56 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 #include <stdio.h> typedef unsigned char *byte_pointer;void show_bytes (byte_pointer start, size_t len) { size_t i; for ( i = 0 ; i < len; i ++ ) printf (" %.2x" , start[i]); printf ("\n" ); } void show_int (int x) { show_bytes((byte_pointer) &x, sizeof (int )); } void show_float (float x) { show_bytes((byte_pointer) &x, sizeof (float )); } void show_pointer (void *x) { show_bytes((byte_pointer) &x, sizeof (void *)); } void test_show_bytes (int val) { int ival = val; float fval = (float )ival; int *pval = &ival; show_int(ival); show_float(fval); show_pointer(pval); puts ("2.57" ); short sval = (short )ival; long lval = (long )ival; double dval = (double )ival; show_short(sval); show_long(lval); show_double(dval); } void show_short (short x) {show_bytes((byte_pointer) &x, sizeof (short )); } void show_long (long x) {show_bytes((byte_pointer) &x, sizeof (long )); } void show_double (double x) {show_bytes((byte_pointer) &x, sizeof (double )); } int main (void ) { int x; scanf ("%d" , &x); test_show_bytes(x); puts ("" ); return 0 ; }
结果 Linux 上的结果 Linux中运行结果,可以发现是小端法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 root@DAT:/mnt/d/desktop/documents/code/csapplab/2_homework# ./2.55 114514 52 bf 01 00 00 a9 df 47 78 72 e5 d3 ff 7f 00 00 root@DAT:/mnt/d/desktop/documents/code/csapplab/2_homework# ./2.55 0 00 00 00 00 00 00 00 00 b8 73 fd dc ff 7f 00 00 root@DAT:/mnt/d/desktop/documents/code/csapplab/2_homework# ./2.55 16 10 00 00 00 00 00 80 41 b8 69 30 db ff 7f 00 00
Windows 上的结果 Windows中运行结果,可以发现也是小端法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 114514 52 bf 01 00 00 a9 df 47 cc fd 61 00 00 00 00 00 PS D:\desktop\documents\code\csapplab> & 'c:\Users\zheng\.vscode\extensions\ms-vscode.cpptools-1.17.5-win32-x64\debugAdapters\bin\WindowsDebugLauncher.exe' '--stdin=Microsoft-MIEngine-In-x3kk2v00.wpa' '--stdout=Microsoft-MIEngine-Out-vce5bszq.mhh' '--stderr=Microsoft-MIEngine-Error-p2lagywq.jry' '--pid=Microsoft-MIEngine-Pid-b1hpb53h.4bh' '--dbgExe=C:\mingw64\bin\gdb.exe' '--interpreter=mi' 0 00 00 00 00 00 00 00 00 cc fd 61 00 00 00 00 00 PS D:\desktop\documents\code\csapplab> & 'c:\Users\zheng\.vscode\extensions\ms-vscode.cpptools-1.17.5-win32-x64\debugAdapters\bin\WindowsDebugLauncher.exe' '--stdin=Microsoft-MIEngine-In-mmc2dxkn.amd' '--stdout=Microsoft-MIEngine-Out-m4qg0ap5.kgr' '--stderr=Microsoft-MIEngine-Error-vzt24roe.yow' '--pid=Microsoft-MIEngine-Pid-amzgwdkd.ibt' '--dbgExe=C:\mingw64\bin\gdb.exe' '--interpreter=mi' 16 10 00 00 00 00 00 80 41 cc fd 61 00 00 00 00 00 PS D:\desktop\documents\code\csapplab>
总结 可以发现,对于相同的数字,他们在都是小端法的不同机器上有着相同的位表示,但是对于指针的位表示有着很大的差别。
2.57 code
结果 Linux 上的运行结果 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 root@DAT:/mnt/d/desktop/documents/code/csapplab# ./2_homework/2_55 114514 52 bf 01 00 00 a9 df 47 58 6d 8a f2 ff 7f 00 00 2.57 52 bf 52 bf 01 00 00 00 00 00 00 00 00 00 20 f5 fb 40 root@DAT:/mnt/d/desktop/documents/code/csapplab# ./2_homework/2_55 0 00 00 00 00 00 00 00 00 58 e3 56 e4 ff 7f 00 00 2.57 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 root@DAT:/mnt/d/desktop/documents/code/csapplab# ./2_homework/2_55 16 10 00 00 00 00 00 80 41 78 f1 5b df ff 7f 00 00 2.57 10 00 10 00 00 00 00 00 00 00 00 00 00 00 00 00 30 40
Windows 上的运行结果 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 PS D:\desktop\documents\code\csapplab> & 'c:\Users\zheng\.vscode\extensions\ms-vscode.cpptools-1.17.5-win32-x64\debugAdapters\bin\WindowsDebugLauncher.exe' '--stdin=Microsoft-MIEngine-In-h542cx5h.1vh' '--stdout=Microsoft-MIEngine-Out-dr1m4jov.55a' '--stderr=Microsoft-MIEngine-Error-2kfssydw.n4g' '--pid=Microsoft-MIEngine-Pid-qqnvig5v.3ps' '--dbgExe=C:\mingw64\bin\gdb.exe' '--interpreter=mi mingw64/bin/gdb.exe' 114514 52 bf 01 00 00 a9 df 47 bc fd 61 00 00 00 00 00 2.57 52 bf 52 bf 01 00 00 00 00 00 20 f5 fb 40 PS D:\desktop\documents\code\csapplab> & 'c:\Users\zheng\.vscode\extensions\ms-vscode.cpptools-1.17.5-win32-x64\debugAdapters\bin\WindowsDebugLauncher.exe' '--stdin=Microsoft-MIEngine-In-ayggdlku.2vt' '--stdout=Microsoft-MIEngine-Out-k1nqv0f3.t41' '--stderr=Microsoft-MIEngine-Error-o5hsig5b.hoy' '--pid=Microsoft-MIEngine-Pid-wz1dvk4t.4kt' '--dbgExe=C:\mingw64\bin\gdb.exe' '--interpreter=mi mingw64/bin/gdb.exe' 0 00 00 00 00 00 00 00 00 bc fd 61 00 00 00 00 00 2.57 00 00 00 00 00 00 00 00 00 00 00 00 00 00 PS D:\desktop\documents\code\csapplab> & 'c:\Users\zheng\.vscode\extensions\ms-vscode.cpptools-1.17.5-win32-x64\debugAdapters\bin\WindowsDebugLauncher.exe' '--stdin=Microsoft-MIEngine-In-lrmm2cxo.gyo' '--stdout=Microsoft-MIEngine-Out-lzge0kqy.g0f' '--stderr=Microsoft-MIEngine-Error-5obra5ki.dwg' '--pid=Microsoft-MIEngine-Pid-1ndcgvzc.z3g' '--dbgExe=C:\mingw64\bin\gdb.exe' '--interpreter=mi mingw64/bin/gdb.exe' 16 10 00 00 00 00 00 80 41 bc fd 61 00 00 00 00 00 2.57 10 00 10 00 00 00 00 00 00 00 00 00 30 40
总结 可以发现对于同一个数字,short、long、double这几类他们在这两个不同机器上的位表示依然一致。目前发现只有指针的位表示在不同机器上有着很大的差别。
2.58 因为我只能在Linux和Windows这两种小端法机器运行,所以没办法校验这个程序的正确性了。反正用的方法特别蠢,就是看对于0x1他是正序还是逆序输出。
code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 #include <stdio.h> typedef unsigned char *byte_pointer;int is_little_endian () { const int x = 0x1 ; return show_bytes((byte_pointer) &x, sizeof (x)); } int show_bytes (byte_pointer start, size_t len) { size_t i; return (int )start[0 ] == 1 ; } int main (void ) { printf ("%d\n" , is_little_endian()); return 0 ; }
结果 1 2 3 1 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-bm35uzzy.zuk" 1>"/tmp/Microsoft-MIEngine-Out-bkoz1q1g.3bj" root@DAT:/mnt/d/desktop/documents/code/csapplab#
2.59 利用掩码和位运算获取对应位置的字符
code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 #include <stdio.h> typedef unsigned char *byte_pointer;void show_bytes (byte_pointer start, size_t len) { for (size_t i = 0 ; i < len; i++ ) printf ("%.2x" , start[i]); puts ("" ); } int main (void ) { int x, y; x = 0x89ABCDEF ; y = 0x76543210 ; int mask1 = 0xFF ; int mask2 = ~mask1; int a = x & mask1; int b = y & mask2; int res = a | b; puts ("---debug---" ); show_bytes((byte_pointer) &x, sizeof (x)); show_bytes((byte_pointer) &y, sizeof (y)); show_bytes((byte_pointer) &mask1, sizeof (mask1)); show_bytes((byte_pointer) &mask2, sizeof (mask2)); show_bytes((byte_pointer) &a, sizeof (a)); show_bytes((byte_pointer) &b, sizeof (b)); show_bytes((byte_pointer) &res, sizeof (res)); puts ("" ); puts ("" ); puts ("" ); puts ("---Result---" ); printf ("%x\n" , res); return 0 ; }
结果 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ---debug--- efcdab89 10325476 ff000000 00ffffff ef000000 00325476 ef325476 ---Result--- 765432ef [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-vd15og4p.eon" 1>"/tmp/Microsoft-MIEngine-Out-poicrtxv.cbl"
2.60 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 #include <stdio.h> unsigned replace_byte (unsigned x, int i, unsigned char b) ;unsigned replace_byte (unsigned x, int i, unsigned char b) { unsigned op1 = b << (i * 8 ); unsigned mask1 = (0xFF << (i * 8 )); unsigned temp1 = mask1 & op1; unsigned temp2 = ~mask1 & x; unsigned res = temp1 | temp2; return res; } int main (void ) { printf ("%.2X\n" , replace_byte(0x12345678 , 2 , 0xAB )); printf ("%.2X\n" , replace_byte(0x12345678 , 0 , 0xAB )); return 0 ; }
结果 1 2 3 12AB5678 123456AB [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-jcvdupw1.gby" 1>"/tmp/Microsoft-MIEngine-Out-tryz424p.yil"
总结 和书上一模一样
2.61 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 #include <stdio.h> int main (void ) { int x; x = 0x00114514 ; int m1 = 0x0 ; int m2 = ~m1; int m3 = 0xFF ; int m4 = m3 << (sizeof (x) - 1 << 3 ); int res1 = x; int res2 = x + 0x1 ; int t1 = x & m3; int res3 = t1; int t2 = x & m4; int res4 = t2; int res = !res1 || !res2 || !res3 || !res4; printf ("x为:%.8X, res:%d\n" ,x, res); return 0 ; }
结果 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 x为:00000000, res:1 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-5k4l4vyj.1pz" 1>"/tmp/Microsoft-MIEngine-Out-oei23k3f.adw" root@DAT:/mnt/d/desktop/documents/code/labs# x为:FFFFFFFF, res:1 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-tvcbzgms.sca" 1>"/tmp/Microsoft-MIEngine-Out-dry20vkj.rji" root@DAT:/mnt/d/desktop/documents/code/labs# x为:114514FF, res:0 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-qqvc5ywk.krd" 1>"/tmp/Microsoft-MIEngine-Out-law5jpe3.nsa" root@DAT:/mnt/d/desktop/documents/code/labs# x为:00114514, res:1 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-plck3i4f.f1y" 1>"/tmp/Microsoft-MIEngine-Out-oqwl5e5w.so0" root@DAT:/mnt/d/desktop/documents/code/labs# x为:11451419, res:0 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-0botd1ci.nbv" 1>"/tmp/Microsoft-MIEngine-Out-y4hyrjgv.te1" root@DAT:/mnt/d/desktop/documents/code/labs#
总结 输出符合预期,不过其实全1和全0的情况其实是后两种情况的子集,没必要单独写的。
2.62 * code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 #include <stdio.h> int int_shifts_are_arithmetc () { int x = (0x1 ) << (sizeof (x) << 3 ) - 1 ; x = (x >> (sizeof (x) << 3 ) - 1 ) + 1 ; x = ((unsigned )x >> (sizeof (x) << 3 ) - 1 ) + 1 ; return !x; } int main (void ) { printf ("%d\n" , int_shifts_are_arithmetc()); return 0 ; }
结果 算数右移 1 2 3 1 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-sz2f0153.k1u" 1>"/tmp/Microsoft-MIEngine-Out-pzwl3qdm.euj" root@DAT:/mnt/d/desktop/documents/code/labs#
逻辑右移 1 2 3 0 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-tzysjmho.m4e" 1>"/tmp/Microsoft-MIEngine-Out-nghzhqry.5wk" root@DAT:/mnt/d/desktop/documents/code/labs#
总结 哎,机器太少了,想多测试都没法。只能用 (unsigned)x
来凑合凑合了。
2.63 * code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 #include <stdio.h> unsigned srl (unsigned x, int k) { unsigned xsra = (int ) x >> k; int w = sizeof (x) * 8 ; int mask = (0x1 << ((k - 1 ) + 1 )) - 1 ; mask = mask << (w-(k-1 )-1 ); mask = ~mask; xsra = mask & xsra; return xsra; } int sra (int x, int k) { int xsrl = (unsigned ) x >> k; int w = sizeof (x) * 8 ; int top = 0x1 << (w - 1 ); int s = top & xsrl; s = top - s; s = !!s; s = ~(~s + 0x1 ); int mask = (0x1 << ((k - 1 ) + 1 )) - 1 ; mask = mask << (w-(k-1 )-1 ); xsrl = s & (mask | xsrl) | ~s & xsrl; return xsrl; } int main (void ) { int x = 0x01234567 ; int k = sizeof (x) * 5 ; puts ("srl:" ); printf ("%.8X\n%.8X\n" , srl(x, k), (unsigned )x >> k); puts ("sra:" ); printf ("%.8X\n%.8X\n" , sra(x, k), x >> k); return 0 ; }
结果 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 srl: 00080123 00080123 sra: FFF80123 FFF80123 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-4ihywx3n.0jn" 1>"/tmp/Microsoft-MIEngine-Out-tnmba0ls.ez5" root@DAT:/mnt/d/desktop/documents/code/labs# srl: 000F0123 000F0123 sra: FFFF0123 FFFF0123 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-omnlf5ds.duu" 1>"/tmp/Microsoft-MIEngine-Out-vhqrrczp.vue" root@DAT:/mnt/d/desktop/documents/code/labs# srl: 00000012 00000012 sra: 00000012 00000012 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-zrig3030.ubw" 1>"/tmp/Microsoft-MIEngine-Out-sadgltcj.3c4" root@DAT:/mnt/d/desktop/documents/code/labs#
总结 难点:
不能用右移来获得掩码,很难受。
对于逻辑右移完成算数右移还需要多一步判断。
写题的时候肚子饿了。
2.64 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 #include <stdio.h> int any_odd_one (unsigned x) ;int any_odd_one (unsigned x) { return !!(0xAAAAAAAA & x); } int main (void ) { int x = 0x55555555 ; printf ("%d\n" , any_odd_one(x)); return 0 ; }
结果 1 2 3 4 5 6 7 0 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-jza3abtb.tun" 1>"/tmp/Microsoft-MIEngine-Out-m223vapc.lgg" root@DAT:/mnt/d/desktop/documents/code/labs# 1 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-a5d2rqvu.hha" 1>"/tmp/Microsoft-MIEngine-Out-v51cyks4.1rf" root@DAT:/mnt/d/desktop/documents/code/labs#
2.65 ** code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 #include <stdio.h> int odd_ones (unsigned x) ;int odd_ones (unsigned x) { unsigned x_16 = (x >> 16 ) ^ x; unsigned x_8 = (x_16 >> 8 ) ^ x_16; unsigned x_4 = (x_8 >> 4 ) ^ x_8; unsigned x_2 = (x_4 >> 2 ) ^ x_4; unsigned x_1 = (x_2 >> 1 ) ^ x_2; return !!(x_1 << 31 ); } int main (void ) { unsigned x = 0x11451411 ; printf ("%d\n" , odd_ones(x)); return 0 ; }
结果 1 2 3 4 5 6 7 8 9 10 11 12 13 0 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-21tjg1z2.213" 1>"/tmp/Microsoft-MIEngine-Out-i1nuiihw.rd5" root@DAT:/mnt/d/desktop/documents/code/labs# 1 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-jqatywc5.5ds" 1>"/tmp/Microsoft-MIEngine-Out-iwgjhdtd.1yj" root@DAT:/mnt/d/desktop/documents/code/labs# 1 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-celqnh4f.zaf" 1>"/tmp/Microsoft-MIEngine-Out-vjdk2bga.5ix" root@DAT:/mnt/d/desktop/documents/code/labs#
总结 这道题太特么有意思了,利用异或的和奇偶数的特性巧妙的将原本需要按位遍历$w$次,转变成只需要$ \log_{2}w $次。
2.66 * code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 #include <stdio.h> int leftmost_one (unsigned x) ;int leftmost_one (unsigned x) { unsigned isZero = !!x; int sum = 0 ; int b16 = !!(x >> 16 ) << 4 ; x >>= b16; int b8 = !!(x >> 8 ) << 3 ; x >>= b8; int b4 = !!(x >> 4 ) << 2 ; x >>= b4; int b2 = !!(x >> 2 ) << 1 ; x >>= b2; int b1 = !!(x >> 1 ); x >>= b1; sum = b16 + b8 + b4 + b2 + b1; return (isZero << sum); } int main (void ) { int x = 0x6600 ; printf ("%.8X\n" , leftmost_one(x)); return 0 ; }
结果 1 2 3 4 5 6 7 8 9 10 11 00008000 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-hixnj1og.sqv" 1>"/tmp/Microsoft-MIEngine-Out-bmkiksag.vsj" root@DAT:/mnt/d/desktop/documents/code/labs# 00004000 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-yzin1hjv.io2" 1>"/tmp/Microsoft-MIEngine-Out-vt0dtm2w.mhs" root@DAT:/mnt/d/desktop/documents/code/labs# 10000000 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-izakqp5x.ftg" 1>"/tmp/Microsoft-MIEngine-Out-au1ywcrk.zq4" root@DAT:/mnt/d/desktop/documents/code/labs#
总结 这题利用了二分的思想和高低位的关系来求解,和上题一样,只需要$ \log_{2}w $次就能得到结果。
2.67 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 #include <stdio.h> int int_size_is_32 () { int set_msb = 1 << 31 ; int beyond_msb = set_msb + set_msb; return set_msb && !beyond_msb; } int int_size_is_16 () { int set_msb = 1 << 16 ; int beyond_msb = set_msb + set_msb; return set_msb && !beyond_msb; } int main (void ) { printf ("%d\n" , int_size_is_32()); printf ("%d\n" , int_size_is_16()); return 0 ; }
结果 1 2 3 4 1 0 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-spybbu4f.tih" 1>"/tmp/Microsoft-MIEngine-Out-4xiozkhn.wml" root@DAT:/mnt/d/desktop/documents/code/labs#
2.68 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 #include <stdio.h> int lower_one_mask (int n) ;int lower_one_mask (int n) { int w = sizeof (n) << 3 ; int mask = ((!!(w - n)) << (w - 1 )) >> (w - 1 ); int res = ~(((0x1 << (w - 1 ))) >> (w - 1 - n)) & mask | ~mask; return res; } int main (void ) { int n = 6 ; printf ("%.8X\n" , lower_one_mask(n)); return 0 ; }
结果 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0000003F [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-pf0aul3d.xrt" 1>"/tmp/Microsoft-MIEngine-Out-zibkafs5.l20" root@DAT:/mnt/d/desktop/documents/code/labs# 0001FFFF [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-t0tcakqx.m5z" 1>"/tmp/Microsoft-MIEngine-Out-supk3mwg.uni" root@DAT:/mnt/d/desktop/documents/code/labs# 00000001 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-al4vs5l0.m2f" 1>"/tmp/Microsoft-MIEngine-Out-p4yyq1ia.ct4" root@DAT:/mnt/d/desktop/documents/code/labs# FFFFFFFF [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-33dzhesj.lpb" 1>"/tmp/Microsoft-MIEngine-Out-gdxxwx21.tyx" root@DAT:/mnt/d/desktop/documents/code/labs#
2.69 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 #include <stdio.h> unsigned rotate_left (unsigned x, int n) ;unsigned rotate_left (unsigned x, int n) { int w = sizeof (n) << 3 ; unsigned x_high = (x >> (w - n)); printf ("%.8X\n" , x_high); unsigned x_low = (x << n); printf ("%.8X\n" , x_low); return x_low | x_high; } int main (void ) { int x = 0x12345678 ; int n = 4 ; printf ("%.8X\n" , rotate_left(x, n)); return 0 ; }
结果 1 2 3 4 5 6 7 8 9 10 11 12 23456781 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-2kcesupy.go2" 1>"/tmp/Microsoft-MIEngine-Out-5tkfyr1i.wm4" root@DAT:/mnt/d/desktop/documents/code/labs# 67812345 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-4tctt5ta.r4f" 1>"/tmp/Microsoft-MIEngine-Out-slvpdar4.tvk" root@DAT:/mnt/d/desktop/documents/code/labs# 12345678 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-uakzwkzd.42h" 1>"/tmp/Microsoft-MIEngine-Out-b02oi4a5.kyz" root@DAT:/mnt/d/desktop/documents/code/labs#
2.70 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 #include <stdio.h> int fits_bits (int x, int n) ;int fits_bits (int x, int n) { int w = sizeof (x) << 3 ; int n_1 = ~((0x1 << (w - 1 )) >> (w - n - 1 )); int res = !!((~x + n_1 + 1 ) >> (w - 1 )); return !res; } int main (void ) { int x = 0xFFFF ; int n = 8 ; printf ("%d\n" , fits_bits(x, n)); return 0 ; }
结果 1 2 3 4 5 6 7 8 9 10 11 12 13 0 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-g3t5qfh4.5bs" 1>"/tmp/Microsoft-MIEngine-Out-cda1gsjz.sre" root@DAT:/mnt/d/desktop/documents/code/labs# 0 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-yakvbt41.ivo" 1>"/tmp/Microsoft-MIEngine-Out-lsuy4bk0.wog" root@DAT:/mnt/d/desktop/documents/code/labs# 1 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-upxiuguf.vsr" 1>"/tmp/Microsoft-MIEngine-Out-i3jldpzr.qdp" root@DAT:/mnt/d/desktop/documents/code/labs#
2.71 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 #include <stdio.h> typedef unsigned packed_t ;int xbyte (packed_t word, int bytenum) ;int xbyte (packed_t word, int bytenum) { int w = sizeof (word) << 3 ; unsigned origin = word >> (bytenum << 3 ) & 0xFF ; int sign = (int )(origin << (w - 8 )) >> (w - 8 ); return sign; } int main (void ) { packed_t word = 0x88BBCCDD ; int bytenum = 3 ; printf ("%.8X\n" , xbyte(word, bytenum)); return 0 ; }
结果 1 2 3 4 FFFFFF88 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-txs4w3kh.ccw" 1>"/tmp/Microsoft-MIEngine-Out-4byd23rl.dwl" root@DAT:/mnt/d/desktop/documents/code/labs#
2.72 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 #include <stdio.h> #include <string.h> void copy_int (int val, void *buf, int maxbytes) ;void copy_int (int val, void *buf, int maxbytes) { if (!((maxbytes - (int )sizeof (val)) >> 31 )) puts ("TEST" ); memcpy (buf, (void *) &val, sizeof (val)); } int main (void ) { int val = 1 ; void *buf; int maxbytes = 1 ; copy_int(val, buf, maxbytes); return 0 ; }
结果 1 2 3 4 5 6 7 TEST [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-40osa1p4.zui" 1>"/tmp/Microsoft-MIEngine-Out-vhn5v3ga.tap" root@DAT:/mnt/d/desktop/documents/code/labs# [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-m42u5let.po0" 1>"/tmp/Microsoft-MIEngine-Out-5y3yvhsy.mka" root@DAT:/mnt/d/desktop/documents/code/labs#
2.73 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 #include <stdio.h> int saturating_add (int x, int y) ;int saturating_add (int x, int y) { int w = sizeof (x) << 3 ; int isneg_x = !!(x >> (w - 1 )); int isneg_y = !!(y >> (w - 1 )); int isneg_both = (isneg_x && isneg_y); int ispos_both = (!isneg_x && !isneg_y); int pos_sat = ~(isneg_both && !((x + y) >> (w - 1 ))) + 1 ; int neg_sat = ~(ispos_both && ((x + y) >> (w - 1 ))) + 1 ; int TMin = 0x1 << (w - 1 ); int TMax = ~TMin; return (~neg_sat & ~neg_sat & (x + y)) | (neg_sat & TMin) | (pos_sat & TMax); } int main (void ) { int w = sizeof (int ) << 3 ; int TMin = 0x1 << (w - 1 ); int TMax = ~TMin; int x = TMin; int y = TMin; printf ("%.8X\t%.8X\n" , saturating_add(x, y), x + y); return 0 ; }
结果 1 2 3 4 5 6 7 8 9 10 11 12 13 7FFFFFFF 00000000 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-wejh032g.xpe" 1>"/tmp/Microsoft-MIEngine-Out-bc3qbt2m.usi" root@DAT:/mnt/d/desktop/documents/code/labs# 80000000 FFFFFFFE [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-ka51v5z5.rm2" 1>"/tmp/Microsoft-MIEngine-Out-kxtkcnid.5pc" root@DAT:/mnt/d/desktop/documents/code/labs# 00114514 00114514 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-rv4pltwy.avz" 1>"/tmp/Microsoft-MIEngine-Out-4izedy3s.ebo" root@DAT:/mnt/d/desktop/documents/code/labs#
2.74 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 #include <stdio.h> int tsub_ok (int x, int y) ;int tsub_ok (int x, int y) { int w = sizeof (x) << 3 ; int res = x - y; int s1 = !(x >> (w - 1 )) && (y >> (w - 1 )) && ((x - y) >> (w - 1 )); int s2 = (x >> (w - 1 )) && !(y >> (w - 1 )) && !((x - y) >> (w - 1 )); return !(s1 || s2); } int main (void ) { int w = sizeof (int ) << 3 ; int TMin = 0x1 << (w - 1 ); int TMax = ~TMin; int x = TMin; int y = TMax; printf ("%d\n" , tsub_ok(x, y)); return 0 ; }
结果 1 2 3 4 5 6 7 8 9 0 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-0x2x4bkt.lfp" 1>"/tmp/Microsoft-MIEngine-Out-3zcqdw5f.4if" root@DAT:/mnt/d/desktop/documents/code/labs# 1 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-jiujtxao.1s0" 1>"/tmp/Microsoft-MIEngine-Out-2yebfsly.kkm" root@DAT:/mnt/d/desktop/documents/code/labs#
2.75 * code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 #include <stdio.h> #include <inttypes.h> unsigned unsigned_high_prod (unsigned x, unsigned y) { int w = sizeof (unsigned ) << 3 ; int a = x; int b = y; unsigned h_x = (unsigned )a >> (w - 1 ); unsigned h_y = (unsigned )b >> (w - 1 ); int64_t temp = (int64_t )a * b; return (temp >> 32 ) + a * h_y + b * h_x + h_x * h_y; } int main (void ) { int x = 0xFF123 ; int y = 0xFF845678 ; printf ("%.8X\t%.8X\n" , unsigned_high_prod(x, y), x * y); return 0 ; }
结果 1 2 3 4 000FE96F 9586CA68 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-qb4t0rys.lol" 1>"/tmp/Microsoft-MIEngine-Out-qd5swdqq.p05" root@DAT:/mnt/d/desktop/documents/code/labs#
总结 难点主要在对公式的理解和注意一些类型转换的细节,尤其是对于x = (int)x; 如果x一开始被声明为unsigned,即使转换成int,最后赋值还是会被隐式的转换成unsigned!
2.76 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 #include <stdio.h> #include <string.h> #include <stdlib.h> void *calloc (size_t nmemb, size_t size) { __uint64_t is_0 =~(!(nmemb && size)) + 1 ; void *mem; mem = malloc (size * nmemb); memset (mem, 0 , sizeof (mem)); return (void *)((__uint64_t )NULL & is_0 | (__uint64_t )mem & ~is_0); } int main (void ) { int *test; test = (int *)calloc (13 , 8 ); printf ("%d\n" , *(test + (2 * 12 ))); return 0 ; }
结果 1 2 3 4 5 6 7 134401 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-mxey4y2v.nhh" 1>"/tmp/Microsoft-MIEngine-Out-fb0oejud.hue" root@DAT:/mnt/d/desktop/documents/code/labs# 0 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-04ownrie.31m" 1>"/tmp/Microsoft-MIEngine-Out-55kqzgh0.dv5" root@DAT:/mnt/d/desktop/documents/code/labs#
2.77 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 #include <stdio.h> int main (void ) { int x = 1 ; int A = (x << 4 ) + (x << 0 ); printf ("%d\n" , A); int B = 0 - ((x << 2 ) + (x << 1 ) + (x << 0 )); printf ("%d\n" , B); int C = (x << 5 ) + (x << 4 ) + (x << 3 ) + (x << 2 ); printf ("%d\n" , C); int D = 0 - ((x << 6 ) + (x << 5 ) + (x << 4 )); printf ("%d\n" , D); return 0 ; }
结果 1 2 3 4 5 6 7 17 -7 60 -112 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-taoyye15.mf0" 1>"/tmp/Microsoft-MIEngine-Out-adpir0se.xsv" root@DAT:/mnt/d/desktop/documents/code/labs#
2.78 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 #include <stdio.h> int divide_power2 (int x, int k) ;int divide_power2 (int x, int k) { int w = sizeof (int ) << 3 ; int mask = (x >> (w - 1 )); int bias = (1 << k) - 1 ; return ((x + bias) >> k) & mask | (x >> k) & ~mask; } int main (void ) { int x = -12340 ; int k = 4 ; int temp = divide_power2(x, k); printf ("%d\n" ,temp); return 0 ; }
结果 1 2 3 4 5 6 7 771 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-ke4pq1t0.0qt" 1>"/tmp/Microsoft-MIEngine-Out-enlx00jk.1ba" root@DAT:/mnt/d/desktop/documents/code/labs# -771 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-dowxttdb.sdr" 1>"/tmp/Microsoft-MIEngine-Out-it2rzfpx.beq" root@DAT:/mnt/d/desktop/documents/code/labs#
2.79 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 #include <stdio.h> int mul3div4 (int x) ;int mul3div4 (int x) { int mul3 = x * 3 ; int w = sizeof (int ) << 3 ; int mask = (x >> (w - 1 )); int k = 2 ; int bias = (0x1 << k) - 1 ; return mask & ((mul3 + bias) >> k) | ~mask & (mul3 >> k); } int main (void ) { int x = ~(0x1 << 31 ); printf ("%d\n" , mul3div4(x)); return 0 ; }
结果 1 2 3 4 5 6 7 8 9 10 11 12 536870911 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-kptkseci.w0p" 1>"/tmp/Microsoft-MIEngine-Out-ehrr5aaa.0hk" root@DAT:/mnt/d/desktop/documents/code/labs# -22 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-eriflhry.nje" 1>"/tmp/Microsoft-MIEngine-Out-uuuo0qrd.hrh" root@DAT:/mnt/d/desktop/documents/code/labs# 22 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-3omo23m5.s35" 1>"/tmp/Microsoft-MIEngine-Out-cjvyzfpz.pwl" root@DAT:/mnt/d/desktop/documents/code/labs#
2.80 * code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 #include <stdio.h> int threefourths (int x) ;int threefourths (int x) { int w = sizeof (int ) << 3 ; int k = 2 ; __int64_t mul3_l = (__int64_t )x * 3 ; int mul3_h = mul3_l >> 32 ; __int64_t mask = mul3_h >> (w - 1 ); int bias = (1 << k) - 1 ; mul3_l = mask & (mul3_l + bias) | ~mask & mul3_l; return mul3_l >> k; } int main (void ) { int test = 0x80000000 ; printf ("res : %.8X\t\toriginal : %.8X\n" , threefourths(test), test); printf ("res : %d\toriginal : %d\n" , threefourths(test), test); return 0 ; }
结果 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 res : A0000000 original : 80000000 res : -1610612736 original : -2147483648 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-kmnlfk1i.qk0" 1>"/tmp/Microsoft-MIEngine-Out-mi0h5hl5.3wc" root@DAT:/mnt/d/desktop/documents/code/labs# res : 5FFFFFFF original : 7FFFFFFF res : 1610612735 original : 2147483647 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-cczlcbn1.mpj" 1>"/tmp/Microsoft-MIEngine-Out-tv1lvxuj.5vz" res : 00000003 original : 00000004 res : 3 original : 4 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-aqc05wrx.iuz" 1>"/tmp/Microsoft-MIEngine-Out-1b5iseia.my2" root@DAT:/mnt/d/desktop/documents/code/labs# res : 00014F7D original : 0001BF52 res : 85885 original : 114514 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-z410jtc0.5sf" 1>"/tmp/Microsoft-MIEngine-Out-dt0bwvrh.coc" root@DAT:/mnt/d/desktop/documents/code/labs# res : FFFEB083 original : FFFE40AE res : -85885 original : -114514 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-xucxooza.d5d" 1>"/tmp/Microsoft-MIEngine-Out-m3c2bck2.bv1" root@DAT:/mnt/d/desktop/documents/code/labs#
总结 难点主要是对溢出的情况的处理,同时加上偏置的时候,也要考虑高位进位的情况。不过之前已经做过了高位溢出的练习了,所以这一题不算特别费劲。
2.81 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 #include <stdio.h> int main (void ) { int k, j; k = 28 , j = 4 ; int A = (0x1 << k) - 0x1 ; printf ("%.8X\n" , A); int B = (0x1 << (k + j)) - 0x1 ; int B_j = (0x1 << j) - 0x1 ; int mask = ~(~(!!B) + 1 ); B = mask & ~(0x0 ) | ~mask & B; B = B - B_j; printf ("%.8X\n" , B); return 0 ; }
结果 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0FFFFFFF FFFFFFF0 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-s2xc0rzh.ifs" 1>"/tmp/Microsoft-MIEngine-Out-icjflp3b.1kc" root@DAT:/mnt/d/desktop/documents/code/labs# 0000003F 000001F8 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-gjyls33c.3io" 1>"/tmp/Microsoft-MIEngine-Out-4cd2pz2v.xlq" root@DAT:/mnt/d/desktop/documents/code/labs# 0000000F F0000000 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-2fjqzwed.jme" 1>"/tmp/Microsoft-MIEngine-Out-rub5222f.puu" root@DAT:/mnt/d/desktop/documents/code/labs#
总结 对于想获取低k位全1的情况,也不要总想着利用算数右移的特点来取反获取,也可以利用对2^k减去1嘛
2.82 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 #include <stdio.h> int main (void ) { int x, y; unsigned ux = (unsigned ) x; unsigned uy = (unsigned ) y; int w = sizeof (int ) << 3 ; x = 0x80000000 ; y = 100 ; int A = (x < y) == (-x) < (-y); printf ("A.\t%d\n" , A); x = 0x7FFFFFFF ; y = 0x7FFFFFFF ; int B = ((x + y) << 4 ) + y - x == 17 * y + 15 * x; printf ("B.\t%d\n" , B); x = 0x80000000 ; y = 0x7FFFFFFF ; int C = (~x) + (~y) + 1 == ~(x + y); printf ("C.\t%d\n" , C); x = -1 ; y = 0x7FFFFFFF ; ux = (unsigned ) x; uy = (unsigned ) y; int D = (ux - uy) == -(unsigned )(y - x); printf ("D.\t%d\n" , D); int E = ((x >> 2 ) << 2 ) <= x; printf ("E.\t%d\n" , E); return 0 ; }
结果 见code
2.83 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 #include <stdio.h> int main (void ) { int base = 100000000 ; int Y = (base >> 1 ) + (base >> 3 ); printf ("0.%d\n" , Y); Y = (base >> 2 ) + (base >> 3 ); printf ("0.%d\n" , Y); Y = (base >> 2 ) + (base >> 5 ) + (base >> 6 ); printf ("0.%d\n" , Y); return 0 ; }
结果 1 2 3 4 5 6 0.62500000 0.37500000 0.29687500 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-n5z5htq5.ffo" 1>"/tmp/Microsoft-MIEngine-Out-ri0iwva5.umk" root@DAT:/mnt/d/desktop/documents/code/labs#
2.84 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 #include <stdio.h> unsigned f2u (float x) { return (unsigned )x; } int float_le (float x, float y) { unsigned ux = f2u(x); unsigned uy = f2u(y); unsigned sx = ux >> 31 ; unsigned sy = uy >> 31 ; return (sx && !sy) || !(sx ^ sy) && !((uy + ~ux + 1 ) >> 31 ); } int main (void ) { float x = 0 ; float y = -0 ; int f = float_le(x, y); printf ("%d\t%d\t%d\n" ,f, (x <= y), f == (x <= y)); return 0 ; }
结果 1 2 3 4 5 6 1 1 1 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-m00f15ie.0ua" 1>"/tmp/Microsoft-MIEngine-Out-gklbvvle.ola" root@DAT:/mnt/d/desktop/documents/code/labs#
2.84 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 #include <stdio.h> unsigned f2u (float x) { union { float f; unsigned u; } conver; conver.f = x; return conver.u; } int float_le (float x, float y) { unsigned ux = f2u(x); unsigned uy = f2u(y); unsigned sx = ux >> 31 ; unsigned sy = uy >> 31 ; return (!((ux << 1 ) - 0x0 ) && !((uy << 1 ) - 0x0 )) || (sx & !sy) || ((!sx && !sy) && !((uy + ~ux + 1 ) >> 31 )) || ((sx && sy) && !((ux + ~uy + 1 ) >> 31 )); int is_same_p = !sx && !sy; int is_same_n = sx && sy; int s = (sx && !sy); int bias = 127 ; int mask_e = 0x7F800000 ; int mask_f = 0x007FFFFF ; int base_F = 0x00800000 ; int f_x = mask_f & ux; int e_x = (mask_e & ux) >> 23 ; int E_x = e_x - bias; int mask_e_s_x = E_x >> 31 ; f_x += base_F; int F_x = (mask_e_s_x & (f_x >> (~E_x + 1 )) | ~mask_e_s_x & (f_x << E_x)); printf ("f_x:%.8X\n" , f_x); printf ("F_x:%.8X\n" , F_x); printf ("E_x:%d\n" , E_x); printf ("mask_e_s_x:%d\n\n" , mask_e_s_x); int f_y = mask_f & uy; int e_y = (mask_e & uy) >> 23 ; int E_y = e_y - bias; int mask_e_s_y = E_y >> 31 ; f_y += base_F; int F_y = (mask_e_s_y & (f_y >> (~E_y + 1 )) | ~mask_e_s_y & (f_y << E_y)); printf ("f_y:%.8X\n" , f_y); printf ("F_y:%.8X\n" , F_y); printf ("E_y:%d\n" , E_y); printf ("mask_e_s_y:%d\n\n" , mask_e_s_y); int res = !((F_y + ~F_x + 1 ) >> 31 ); int ress = is_same_n && !res || is_same_p && res || !(F_y + ~F_x + 1 ); printf ("res:%d\n" , res); } int main (void ) { float x = 3.9E40 ; float y = 3.8E40 ; int res = float_le(x, y); return 0 ; }
结果 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 res:1 1 1 1 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-2wdtkdot.g4r" 1>"/tmp/Microsoft-MIEngine-Out-pdamq2ig.qmz" root@DAT:/mnt/d/desktop/documents/code/labs# 0 0 1 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-5voazk52.jpm" 1>"/tmp/Microsoft-MIEngine-Out-ds2inloh.og1" root@DAT:/mnt/d/desktop/documents/code/labs# 1 1 1 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-2th5ba1h.1q0" 1>"/tmp/Microsoft-MIEngine-Out-ziafcqeo.tdl" root@DAT:/mnt/d/desktop/documents/code/labs#
总结 说实话,虽然中间磕磕碰碰,而且方法还用错了,为了这一道题花了特别多时间,但是学到了很多东西,所以值得!倒不如说,这道题补齐了我浮点数理解不够深入的短板。感谢我的错误理解,让我直接从零开始尝试复现浮点数计算的底层逻辑。
2.85 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 #include <stdio.h> int main (void ) { union { float f; unsigned u; } conver_32; union { double d; unsigned long int lu; } conver_64; puts ("A." ); conver_32.u = 0x40E00000 ; printf ("float:\t%f\n" , conver_32.f); conver_64.lu = 0x401C000000000000 ; printf ("double:\t%lf\n\n" , conver_64.d); puts ("B." ); conver_32.u = 0x4B7FFFFF ; printf ("float:\t%f\n" , conver_32.f); conver_64.lu = 0x433FFFFFFFFFFFFF ; printf ("double:\t%lf\n\n" , conver_64.d); puts ("C." ); conver_32.u = 0x80FFFFFF ; printf ("float:\t%.170f\n" , conver_32.f); conver_64.lu = 0x800FFFFFFFFFFFFF ; printf ("double:\t%.1100lf\n\n" , conver_64.d); return 0 ; }
结论 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A. float: 7.000000 double: 7.000000 B. float: 16777215.000000 double: 9007199254740991.000000 C. float: -0.00000000000000000000000000000000000002350988561514728583455765982071533026645717985517980855365926236850006129930346077117064851336181163787841796875000000000000000000000 double: -0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002225073858507200889024586876085859887650423112240959465493524802562440009228235695178775888803759155264230978095043431208587738715835729182199302029437922422355981982750124204178896957131179108226104397197960400045489739193807919893608152561311337614984204327175103362739154978273159414382813627511383860409424946494228631669542910508020181592664213499660651780309507591305871984642390606863710200510872328278467884363194451586613504122347901479236958520832159762106637540161373658304419360371477835530668283453563400507407304013560296804637591858316312422452159926254649430083685186171942241764645513713542013221703137049658321015465406803539741790602258950302350193751977303094576317321085250729930508976158251915972075723245543477091246131749358028173446655273437500000000000000000000000000 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-fvtdzsil.3xf" 1>"/tmp/Microsoft-MIEngine-Out-4uxmzyh4.oz2" root@DAT:/mnt/d/desktop/documents/code/labs#
2.89 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 #include <stdio.h> int main (void ) { union { float f; int i; } conver_32; union { double d; int i; } conver_64; int x, y, z; x = 0x80000000 ; y = 0x7FFFFFFF ; z = 0 ; double dx = (double )x; double dy = (double )y; double dz = (double )z; conver_32.f = (float )dx; printf ("%.8X\t%.8X\n" ,x, conver_32.i); printf ("%f\t%f\n" ,(float )x, (float )dx); printf ("A.\t%d\n\n" ,(float )x == (float )dx); printf ("B.\t%d\n\n" ,(dx-dy) == (double )(x-y)); printf ("C.\t%d\n\n" ,((dx+dy)+dz) == (dx+(dy+dz))); printf ("D.\t%d\n\n" ,((dx*dy)*dz) == (dx*(dy*dz))); printf ("E.\t%d\n\n" ,(dx/dx)==(dz/dz)); return 0 ; }
结果 1 2 3 4 5 6 7 8 9 10 11 12 13 A. 1 B. 0 C. 1 D. 1 E. 0 [1] + Done "/usr/bin/gdb" --interpreter=mi /usr/bin/gdb --tty=${DbgTerm} 0<"/tmp/Microsoft-MIEngine-In-bvclesk0.y5s" 1>"/tmp/Microsoft-MIEngine-Out-coxfxidg.wcq" root@DAT:/mnt/d/desktop/documents/code/labs#
2.90 code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 #include <stdio.h> #include <math.h> float u2f (unsigned uf) ;float fpwr2 (int x) { unsigned exp , frac; unsigned u; if (x < -149 ){ exp = 0 ; frac = 0 ; } else if (x < -126 ){ exp = 0x0 ; frac = 1 << (23 - (-x - 126 )); printf ("%.8X\n" , frac); } else if (x < 128 ){ exp = x + 127 ; frac = 0 ; } else { exp = 255 ; frac = 0 ; } u = exp << 23 | frac; return u2f(u); } float u2f (unsigned uf) { union { float f; unsigned u; } conver; conver.u = uf; return conver.f; } int main (void ) { union { float f; unsigned u; } conver; union { float f1; unsigned u1; } conver1; int x = -149 ; float a = pow (2 ,x); float b = fpwr2(x); conver.f = a; conver1.f1 = b; printf ("%.200f\n%.200f\n\n" , a, b); printf ("%.8X\n%.8X\n" , conver.u, conver1.u1); return 0 ; }
结果 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 root@DAT:/mnt/d/desktop/documents/code/labs/csapplab/2_homework# ./2_90 0.00000000000000000000000000000000000000000000140129846432481707092372958328991613128026194187651577175706828388979108268586060148663818836212158203125000000000000000000000000000000000000000000000000000 0.00000000000000000000000000000000000000000000140129846432481707092372958328991613128026194187651577175706828388979108268586060148663818836212158203125000000000000000000000000000000000000000000000000000 00000001 00000001 root@DAT:/mnt/d/desktop/documents/code/labs/csapplab/2_homework# root@DAT:/mnt/d/desktop/documents/code/labs/csapplab/2_homework# ./2_90 0.00000000000000000000000000000000000001175494350822287507968736537222245677818665556772087521508751706278417259454727172851562500000000000000000000000000000000000000000000000000000000000000000000000000 0.00000000000000000000000000000000000001175494350822287507968736537222245677818665556772087521508751706278417259454727172851562500000000000000000000000000000000000000000000000000000000000000000000000000 00800000 00800000 root@DAT:/mnt/d/desktop/documents/code/labs/csapplab/2_homework# root@DAT:/mnt/d/desktop/documents/code/labs/csapplab/2_homework# ./2_90 1.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 1.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 3F800000 3F800000 root@DAT:/mnt/d/desktop/documents/code/labs/csapplab/2_homework# ./2_90 170141183460469231731687303715884105728.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 170141183460469231731687303715884105728.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 7F000000 7F000000 root@DAT:/mnt/d/desktop/documents/code/labs/csapplab/2_homework# root@DAT:/mnt/d/desktop/documents/code/labs/csapplab/2_homework# ./2_90 inf inf 7F800000 7F800000 root@DAT:/mnt/d/desktop/documents/code/labs/csapplab/2_homework#
总结 这题还是很有趣的,需要认真考虑规范数和非规范数边界地方的细节。同时也更深刻理解了规范数和非规范数的区别,明白了非规范数字只是因为没办法用指数来控制所以“非规范”,并不代表非规范数都不是数。而且这次的工作其实就相当于纯手撸了一个pow(2, x)。 了解了底层原理之后,说不定可以手撸一个pow_double(2, x)呢,精度比单纯的pow(2, x)更高的那种。