预处理:

1.将时域信号只保留Result列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os


root_input_folder = 'Dataset'
root_intermediate_folder = 'Dataset_preprocess'
if not os.path.exists(root_intermediate_folder):
os.mkdir(root_intermediate_folder)


for subdir in os.listdir(root_input_folder):

input_folder = os.path.join(root_input_folder, subdir)
intermediate_folder = os.path.join(root_intermediate_folder, subdir)

if not os.path.exists(intermediate_folder):
os.mkdir(intermediate_folder)


csv_files = [file for file in os.listdir(input_folder) if file.endswith(".csv")]


for csv_file in csv_files:
with open(os.path.join(input_folder, csv_file), 'r') as infile:
lines = infile.readlines()
result_data = []
start = False
row = 0
for line in lines:
if "++++++ Result Data ++++++" in line:
start = True
continue
if start and line.strip():
row += 1
if row != 1:
result_value = line.strip().split(",")[2]
result_data.append(result_value)


intermediate_file = os.path.join(intermediate_folder, f"{csv_file[:-4]}.csv")

with open(intermediate_file, 'w') as outfile:
for result_value in result_data:
outfile.write(result_value + '\n')

print("Processing completed!")

2.对数据进行S-G去噪

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
import pandas as pd
from scipy.signal import savgol_filter


# intermediate_folder = "TimeDomain_pro_c_n"
# denoise_folder = "TimeDomain_pro_c_n_dn"
#
# if not os.path.exists(denoise_folder):
# os.mkdir(denoise_folder)
#
# csv_files = [file for file in os.listdir(intermediate_folder) if file.endswith(".csv")]

# S-G
def denoise_savgol(data, window_length=11, polyorder=2):
return savgol_filter(data, window_length, polyorder)

#
# for csv_file in csv_files:
#
# data = pd.read_csv(os.path.join(intermediate_folder, csv_file), header=None)
#
# denoised_result = denoise_savgol(data.iloc[:, 0])
#
# denoise_file = os.path.join(denoise_folder, f"{csv_file[:-4]}.csv")
#
# pd.DataFrame(denoised_result).to_csv(denoise_file, index=False, header=False)
#
#
#
# import os


root_input_folder = 'Dataset_preprocess'
root_intermediate_folder = 'Dataset_preprocess_denoised'
if not os.path.exists(root_intermediate_folder):
os.mkdir(root_intermediate_folder)


for subdir in os.listdir(root_input_folder):

input_folder = os.path.join(root_input_folder, subdir)
intermediate_folder = os.path.join(root_intermediate_folder, subdir)

if not os.path.exists(intermediate_folder):
os.mkdir(intermediate_folder)


csv_files = [file for file in os.listdir(input_folder) if file.endswith(".csv")]


for csv_file in csv_files:
data = pd.read_csv(os.path.join(input_folder, csv_file), header=None)

denoised_result = denoise_savgol(data.iloc[:, 0])

denoise_file = os.path.join(intermediate_folder, f"{csv_file[:-4]}.csv")

pd.DataFrame(denoised_result).to_csv(denoise_file, index=False, header=False)


print("Denoised completed!")

3.对去噪后数据进行裁剪,只保留波形最明显的2500个数据点

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
import numpy as np


root_input_directory = 'Dataset_preprocess_denoised'
root_output_directory = 'Dataset_]_preprocess_denoised_crop'


os.makedirs(root_output_directory, exist_ok=True)


for subdir in os.listdir(root_input_directory):

input_directory = os.path.join(root_input_directory, subdir)
output_directory = os.path.join(root_output_directory, subdir)

os.makedirs(output_directory, exist_ok=True)


csv_files = sorted([file for file in os.listdir(input_directory) if file.endswith('.csv')])

# 时域 8500 - 11000
# start_index = 8500
# end_index = 11000
# 吸收率 75 - 225
# Transmittance(log) 0 - 300
start_index = 8500
end_index = 11000



for csv_file in csv_files:

data = np.genfromtxt(os.path.join(input_directory, csv_file), delimiter=',')


cropped_data = data[start_index:end_index]

new_csv_file = os.path.splitext(csv_file)[0] + '.csv'


output_path = os.path.join(output_directory, new_csv_file)
np.savetxt(output_path, cropped_data, delimiter=',')

print(f"已保存文件: {new_csv_file}")

print("裁剪完成。")

分类

1.1D-CNNs

利用卷积层自动提取时域信号中的特征,然后分类。

模型结构

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
model = Sequential()


model.add(Conv1D(16, 3, strides=1, padding='same', input_shape=(row_number, 1)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv1D(16, 3, strides=1, padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling1D(pool_size=2, strides=1))


model.add(Conv1D(32, 3, strides=1, padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv1D(32, 3, strides=1, padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling1D(pool_size=2, strides=1))


model.add(Conv1D(64, 3, strides=1, padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv1D(64, 3, strides=1, padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling1D(pool_size=2, strides=1))

model.add(Flatten())
model.add(Dense(num_classes, activation='softmax'))


optimizer = Adam(learning_rate=0.000005, beta_1=0.9, beta_2=0.999)
model.compile(optimizer=optimizer, loss=categorical_crossentropy, metrics=['accuracy'])


model.summary()

checkpoint = ModelCheckpoint('best_model.h5', monitor='val_accuracy', mode='max', save_best_only=True, verbose=1)

# Train the model
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size=32, epochs=500, callbacks=[checkpoint])

# Save the final model
model.save('final_model.h5')

模型结构说明

Conv1D层是卷积层,将输入数据视为1D向量处理。数字16、32和64是卷积层将学习的滤波器的数量。数字3是滤波器的宽度,即卷积核的大小。’Strides’设置为1,表示滤波器在沿输入数据扫描时每次移动一步。’Padding’设置为’same’,这意味着它将在输入数据的边缘用零填充,以保持输出大小与输入大小相同。

BatchNormalization层用于在每个批次中对前一层的激活进行归一化,即应用一种变换,使得平均激活接近0,激活标准差接近1。它有助于更快的学习和更高的总体准确性。

Activation层对输出应用激活函数。在这种情况下,使用的是’relu’(修正线性单元),如果输入是正的,它将直接输出输入,否则,它将输出零。

MaxPooling1D层用于对输入进行下采样,沿其空间维度(高度和宽度)。’Pool size’设置为2,意味着它将在2个值的窗口上取最大值。

Flatten层用于将输入展平。例如,如果对具有输入形状为(batch_size, 2,2)的层应用flatten,那么该层的输出形状将为(batch_size, 4)。

Dense层是常规的深度连接神经网络层。它是最常见和频繁使用的层。Dense层对输入执行以下操作并返回输出。

然后使用Adam优化器、分类交叉熵作为损失函数和准确性作为度量来编译模型。Adam优化器的学习率设置为0.000005,beta_1和beta_2参数分别设置为0.9和0.999。

然后使用fit方法训练模型,使用训练数据(X_train, y_train)、验证数据(X_test, y_test)、批量大小为32,并进行500个周期。检查点用于在验证准确性提高时保存模型权重。

最后,训练后将模型保存到’final_model.h5’。

训练结果

训练集和验证集

训练集准确度:0.99
验证集准确度:0.82

训练曲线:

混淆矩阵:

测试集

准确度:0.94 or 17/18

混淆矩阵

2.SVM + 寻优算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import pandas as pd
import numpy as np
import os
import math
from sklearn import svm
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

STEP_MAX = 1.0
STEP_MIN = 0.1
T = 50


data_folder = 'Dataset_TA_'
labels = []
data = []

for class_folder in os.listdir(data_folder):
class_folder_path = os.path.join(data_folder, class_folder)
for file_name in os.listdir(class_folder_path):
file_path = os.path.join(class_folder_path, file_name)
sample_data = pd.read_csv(file_path, header=None, delimiter=',').values
data.append(sample_data)
labels.append(class_folder)

data = np.array(data)
labels = np.array(labels)
data = data.reshape((data.shape[0], -1))


label_encoder = LabelEncoder()
encoded_labels = label_encoder.fit_transform(labels)

X_train, X_val, y_train, y_val = train_test_split(data, encoded_labels, test_size=0.2, random_state=42)


def spcs_svm_optimization(X_train, y_train, X_val, y_val):
best_score = 0.0
best_params = {'C': 1.69, 'gamma': 0.0006}


C = best_params['C']

print("updating C")
for t in range(1, T + 1):
step = STEP_MIN + (STEP_MAX - STEP_MIN) * (1 - t / T)
p_a = 1 - math.exp(-t ** 3 / T ** 7)




svm_model = make_pipeline(StandardScaler(), svm.SVC(C=C, gamma='scale', kernel='rbf'))
svm_model.fit(X_train, y_train)
predictions = svm_model.predict(X_val)
score = accuracy_score(y_val, predictions)


if score > best_score:
best_score = score
best_params['C'] = C

print(f"updating C: {t+1}/{T}, Best Score: {best_score:.4f}, Best Params: {best_params}")

C = np.random.uniform(1.5,2) * step

print("updating gamma")


gamma = 0.0006


for t in range(1, T + 1):
step = STEP_MIN + (STEP_MAX - STEP_MIN) * (1 - t / T)
p_a = 1 - math.exp(-t ** 3 / T ** 7)


svm_model = make_pipeline(StandardScaler(), svm.SVC(C=C, gamma=gamma, kernel='rbf'))
svm_model.fit(X_train, y_train)
predictions = svm_model.predict(X_val)
score = accuracy_score(y_val, predictions)


if score > best_score:
best_score = score
best_params['gamma'] = gamma

print(f"updating gamma: {t + 1}/{T}, Best Score: {best_score:.4f}, Best Params: {best_params}")
gamma = abs(gamma * step + + np.random.uniform(-0.0001, 0.0001))

return best_params



best_params = spcs_svm_optimization(X_train, y_train, X_val, y_val)


final_svm = make_pipeline(StandardScaler(), svm.SVC(C=best_params['C'], gamma=best_params['gamma'], kernel='rbf'))
final_svm.fit(X_train, y_train)


y_pred = final_svm.predict(X_val)
print('Accuracy:', accuracy_score(y_val, y_pred))



def predict_directory(directory_path):
for filename in os.listdir(directory_path):
if filename.endswith(".csv"):
file_path = os.path.join(directory_path, filename)
new_sample_data = pd.read_csv(file_path, header=None, delimiter=',').values.reshape(1, -1)
new_sample_pred = final_svm.predict(new_sample_data)
new_sample_label = label_encoder.inverse_transform(new_sample_pred)
print(f"Predicted class for {filename} is: {new_sample_label[0]}")



directory_path = 'Testset_TA_less/0'
predict_directory(directory_path)





训练结果

训练集准确度:0.8481012658227848

测试集准确度:0.83 or 15/18

3.DRSN + bagging

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import torch
import torch.nn as nn
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset, random_split
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import numpy as np
import pandas as pd
import os
from sklearn.metrics import f1_score, roc_auc_score

torch.cuda.empty_cache()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

class BasicBlock(nn.Module):
expansion = 1

def __init__(self, in_channels, out_channels, stride=1):
super().__init__()
self.shrinkage = Shrinkage(out_channels, gap_size=(1))
# residual function
self.residual_function = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm1d(out_channels),
nn.ReLU(inplace=True),
nn.Conv1d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, padding=1, bias=False),
nn.BatchNorm1d(out_channels * BasicBlock.expansion),
self.shrinkage
)
# shortcut
self.shortcut = nn.Sequential()

# the shortcut output dimension is not the same with residual function
# use 1*1 convolution to match the dimension
if stride != 1 or in_channels != BasicBlock.expansion * out_channels:
self.shortcut = nn.Sequential(
nn.Conv1d(in_channels, out_channels * BasicBlock.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm1d(out_channels * BasicBlock.expansion)
)

def forward(self, x):

return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x))
# a = self.residual_function(x),
# b = self.shortcut(x),
# c = a+b
# return c


class Shrinkage(nn.Module):
def __init__(self, channel, gap_size):
super(Shrinkage, self).__init__()
self.gap = nn.AdaptiveAvgPool1d(gap_size)
self.fc = nn.Sequential(
nn.Linear(channel, channel),
nn.BatchNorm1d(channel),
nn.ReLU(inplace=True),
nn.Linear(channel, channel),
nn.Sigmoid(),
)

def forward(self, x):
x_raw = x
x = torch.abs(x)
x_abs = x
x = self.gap(x)
x = torch.flatten(x, 1)
average = torch.mean(x, dim=1, keepdim=True) #CS
# average = x #CW
x = self.fc(x)
x = torch.mul(average, x)
x = x.unsqueeze(2)
# soft thresholding
sub = x_abs - x
zeros = sub - sub
n_sub = torch.max(sub, zeros)
x = torch.mul(torch.sign(x_raw), n_sub)
return x


class RSNet(nn.Module):

def __init__(self, block, num_block, num_classes=17):
super().__init__()

self.in_channels = 64

self.conv1 = nn.Sequential(
nn.Conv1d(1, 64, kernel_size=3, padding=1, bias=False),
nn.BatchNorm1d(64),
nn.ReLU(inplace=True))
# we use a different inputsize than the original paper
# so conv2_x's stride is 1
self.conv2_x = self._make_layer(block, 64, num_block[0], 1)
self.conv3_x = self._make_layer(block, 128, num_block[1], 2)
self.conv4_x = self._make_layer(block, 256, num_block[2], 2)
self.conv5_x = self._make_layer(block, 512, num_block[3], 2)
#self.conv6_x = self._make_layer(block, 1024, num_block[4], 2)
self.avg_pool = nn.AdaptiveAvgPool1d((1))
# self.dropout1 = nn.Dropout(0.5)
self.fc = nn.Linear(512 * block.expansion, num_classes)

def _make_layer(self, block, out_channels, num_blocks, stride):
"""make rsnet layers(by layer i didnt mean this 'layer' was the
same as a neuron netowork layer, ex. conv layer), one layer may
contain more than one residual shrinkage block

Args:
block: block type, basic block or bottle neck block
out_channels: output depth channel number of this layer
num_blocks: how many blocks per layer
stride: the stride of the first block of this layer

Return:
return a rsnet layer
"""

# we have num_block blocks per layer, the first block
# could be 1 or 2, other blocks would always be 1
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion

return nn.Sequential(*layers)

def forward(self, x):
output = self.conv1(x)
output = self.conv2_x(output)
output = self.conv3_x(output)
output = self.conv4_x(output)
output = self.conv5_x(output)
# output = self.conv6_x(output)
output = self.avg_pool(output)
output = output.view(output.size(0), -1)
# output = self.dropout1(output)
output = self.fc(output)

return output


def rsnet18():
""" return a RSNet 18 object
"""
return RSNet(BasicBlock, [2, 2, 2, 2])


def rsnet34():
""" return a RSNet 34 object
"""
return RSNet(BasicBlock, [3, 4, 6, 3, 2])

def save_models(models, model_base_name):
for i, model in enumerate(models):
torch.save(model.state_dict(), f"{model_base_name}_{i}.pth")

def load_models(model_class, model_base_name, num_models, device):
models = []
for i in range(num_models):
model = model_class().to(device)
model.load_state_dict(torch.load(f"{model_base_name}_{i}.pth"))
models.append(model)
return models


def ensemble_predict(models, data_loader, device):
all_preds = []
for model in models:
model_preds = []
model.eval()
with torch.no_grad():
for data, _ in data_loader:
data = data.to(device)
outputs = model(data)
_, predicted = torch.max(outputs.data, 1)
model_preds.append(predicted.cpu().numpy())
all_preds.append(np.concatenate(model_preds))

# Transpose to get predictions per instance rather than per model
all_preds = np.array(all_preds).T

# Use a simple majority vote for the final prediction
final_preds = []
for preds in all_preds:
(values, counts) = np.unique(preds, return_counts=True)
index = np.argmax(counts)
final_preds.append(values[index])

return np.array(final_preds)

if __name__=='__main__':


row_number = 2650
column_number = 1
def load_data(data_dir):
X, y = [], []
incorrect_shape_count = 0
for category in os.listdir(data_dir):
category_path = os.path.join(data_dir, category)
for file in os.listdir(category_path):
file_path = os.path.join(category_path, file)
data = pd.read_csv(file_path, header=None).values
if data.shape != (row_number, column_number): # shape (1049,1)
incorrect_shape_count += 1
print(f"Incorrect shape for file: {file_path}. Shape is {data.shape}.")
continue
X.append(data)
y.append(category)
X = np.array(X)
y = np.array(y)
print(f"Total files with incorrect shape: {incorrect_shape_count}")
return X, y




def load_pretrained_model(model, path):
# Load the state_dict from the file
pretrained_state_dict = torch.load(path)

# Remove the 'crnn.' prefix from each key
corrected_state_dict = {key.replace('', ''): value for key, value in pretrained_state_dict.items()}

# Load the corrected state_dict into the model
model.load_state_dict(corrected_state_dict)
return model


data_dir = 'Dataset_TA_'
X, y = load_data(data_dir)

X = X.reshape(-1, column_number, row_number)
label_encoder = LabelEncoder()
y_encoded = label_encoder.fit_transform(y)

X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, train_size=0.8, test_size=0.2, random_state=42)

X_train_tensor = torch.tensor(X_train, dtype=torch.float32).to(device)
y_train_tensor = torch.tensor(y_train, dtype=torch.long).to(device)
X_test_tensor = torch.tensor(X_test, dtype=torch.float32).to(device)
y_test_tensor = torch.tensor(y_test, dtype=torch.long).to(device)

train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)

test_dataset = TensorDataset(X_test_tensor, y_test_tensor)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)

num_models = 5 # 假设我们训练5个模型
models = []
best_accs = [0] * num_models

for i in range(num_models):
model = rsnet34()
model = model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.00001)

num_epochs = 500
best_acc = 0

for epoch in range(num_epochs):
model.train()
total_loss = 0
correct_train = 0
total_train = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
outputs = model(data)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
total_loss += loss.item()

_, predicted = torch.max(outputs.data, 1)
total_train += target.size(0)
correct_train += (predicted == target).sum().item()

train_accuracy = 100 * correct_train / total_train

model.eval()
correct_val = 0
total_val = 0
val_loss = 0
all_preds = []
all_true = []
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
outputs = model(data)
loss = criterion(outputs, target)
val_loss += loss.item()

_, predicted = torch.max(outputs.data, 1)
total_val += target.size(0)
correct_val += (predicted == target).sum().item()

all_preds.extend(predicted.cpu().numpy())
all_true.extend(target.cpu().numpy())

val_accuracy = 100 * correct_val / total_val
f1 = f1_score(all_true, all_preds, average='weighted')
val_loss = val_loss / len(test_loader)

print(f"Model {i}, Epoch {epoch + 1}/{num_epochs}, Train Loss: {total_loss / len(train_loader):.4f}, "
f"Train Accuracy: {train_accuracy:.2f}%, Val Loss: {val_loss:.4f}, "
f"Val Accuracy: {val_accuracy:.2f}%, F1 Score: {f1:.4f}")

if 100 * correct_val / total_val > best_acc:
best_acc = 100 * correct_val / total_val
print(f"Model {i}, save model, best acc: {best_acc} %")
torch.save(model.state_dict(), f'DRSN_model_inter_{i}.pth')

models.append(model)
best_accs[i] = best_acc
save_models(models, "DRSN_model_final")


loaded_models = load_models(rsnet34, "DRSN_model_final", num_models, device)

final_preds = ensemble_predict(loaded_models, test_loader, device)


all_true = []
with torch.no_grad():
for _, target in test_loader:
all_true.extend(target.cpu().numpy())
ensemble_accuracy = np.mean(final_preds == np.array(all_true)) * 100
print(f"Ensemble Model Accuracy: {ensemble_accuracy:.2f}%")


训练结果

测试集准确度:0.7~0.8

4.CRNN + SVM

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import os
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from torch.utils.data import DataLoader, TensorDataset
from sklearn.metrics import f1_score, roc_auc_score
import torch.nn.functional as F
import random
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.tensorboard import SummaryWriter
from sklearn import svm
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline


torch.cuda.empty_cache()
writer = SummaryWriter('runs/03')

# shape (2500,1)
column_number = 1
row_number = 2650

# set hyperparameter
num_epochs = 1000
learning_rate = 1e-6

# set seeds
seed = 13
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# loading data
def load_data(data_dir):
X, y = [], []
incorrect_shape_count = 0
for category in os.listdir(data_dir):
category_path = os.path.join(data_dir, category)
for file in os.listdir(category_path):
file_path = os.path.join(category_path, file)
data = pd.read_csv(file_path, header=None).values
if data.shape != (row_number, column_number):
incorrect_shape_count += 1
print(f"Incorrect shape for file: {file_path}. Shape is {data.shape}.")
continue
X.append(data)
y.append(category)
X = np.array(X)
y = np.array(y)
print(f"Total files with incorrect shape: {incorrect_shape_count}")
return X, y

# class CRNN(nn.Module):
# def __init__(self, num_classes):
# super(CRNN, self).__init__()
# self.conv1 = nn.Conv1d(column_number, 16, 7, padding=3) # First convolutional layer
# self.conv2 = nn.Conv1d(16, 32, 7, padding=3) # Second convolutional layer
# self.maxpool1 = nn.MaxPool1d(kernel_size=2) # Adjusted kernel_size to 2
# self.bn1 = nn.BatchNorm1d(32) # Adjusted input channels to 32
# self.lstm1 = nn.LSTM(32, 64, batch_first=True) # Removed one LSTM layer
# self.fc1 = nn.Linear(64 * (row_number // 2), 128) # Adjusted input size based on max pooling and LSTM output
# self.bn2 = nn.BatchNorm1d(128)
# self.fc2 = nn.Linear(128, num_classes)
# self.dropout = nn.Dropout(0.5)
#
# def forward(self, x):
# x = F.relu(self.bn1(self.maxpool1(self.conv2(F.relu(self.conv1(x))))))
# # x = self.dropout(x)
# x = x.permute(0, 2, 1) # Swap dimensions for RNN layer (batch_size, sequence_length, input_size)
# x, _ = self.lstm1(x) # Passing through the remaining LSTM layer
# x = x.contiguous().view(x.size(0), -1) # Flatten LSTM output for fully connected layer
# x = F.relu(self.bn2(self.fc1(x)))
# # x = self.dropout(x)
# x = self.fc2(x)
# return x


class CRNN(nn.Module):
def __init__(self, num_classes):
super(CRNN, self).__init__()
self.conv1 = nn.Conv1d(column_number, 16, 7, padding=3) # Keeping one convolutional layer
# self.conv2 = nn.Conv1d(16, 16, 7, padding=3)
self.maxpool1 = nn.MaxPool1d(kernel_size=1)
self.bn1 = nn.BatchNorm1d(16)
self.lstm1 = nn.LSTM(1, 32, batch_first=True)
self.lstm2 = nn.LSTM(32, 64, batch_first=True) # Original LSTM layer
self.fc1 = nn.Linear(64 * row_number, 128) # Adjust input size based on LSTM output
self.bn2 = nn.BatchNorm1d(128)
self.fc2 = nn.Linear(128, num_classes)
self.dropout = nn.Dropout(0.5)

def forward(self, x):
# x = F.relu(self.bn1(self.conv1(x)))
# # x = F.relu(self.bn1(self.conv2(x)))
# x = self.maxpool1(x)
# x = self.dropout(x)
x = x.permute(0, 2, 1) # Swap dimensions for RNN layer (batch_size, sequence_length, input_size)
x, _ = self.lstm1(x) # Passing through the first LSTM layer
x, _ = self.lstm2(x) # Passing through the second LSTM layer
x = x.contiguous().view(x.size(0), -1) # Flatten LSTM output for fully connected layer
x = F.relu(self.bn2(self.fc1(x)))
x = self.dropout(x)
x = self.fc2(x)
return x




class CRNN_SVM(nn.Module):
def __init__(self, crnn_model):
super(CRNN_SVM, self).__init__()
self.crnn = crnn_model
self.svm = None

def forward(self, x):
x = self.crnn(x)
if self.svm:
x = torch.tensor(self.svm.decision_function(x.detach().cpu().numpy()), device=x.device)
return x

def fit_svm(self, X, y):
self.svm = Pipeline([
('scaler', StandardScaler()),
('svc', svm.SVC(kernel='rbf'))
])
self.svm.fit(X.detach().cpu().numpy(), y.detach().cpu().numpy())

# def interactive_learning(model, data_loader, optimizer, criterion):
# model.train() # 确保模型处于训练模式
# for data, target in data_loader:
# data, target = data.to(device), target.to(device)
# outputs = model(data)
# _, predicted = torch.max(outputs.data, 1)
# for i in range(len(predicted)):
# print(f"Model Prediction: {predicted[i].item()}, Actual Label: {target[i].item()}")
# if predicted[i].item() != target[i].item():
# print("wrong anser")
# correction = target[i].item()
# else:
# correction = ''
# if correction:
# target_corrected = torch.tensor(int(correction)).to(device)
# # 在这里,您可以使用您的优化器和损失函数来更新模型
# optimizer.zero_grad()
# loss = criterion(outputs[i].unsqueeze(0), target_corrected.unsqueeze(0))
# loss.backward(retain_graph=True) # 修改在这里
# optimizer.step()

def interactive_learning(model, data_loader, optimizer, criterion, batch_size=5):
model.train() # 确保模型处于训练模式
incorrect_data = []
incorrect_targets = []
for data, target in data_loader:
data, target = data.to(device), target.to(device)
outputs = model(data)
_, predicted = torch.max(outputs.data, 1)
for i in range(len(predicted)):
if predicted[i].item() != target[i].item():
incorrect_data.append(data[i])
incorrect_targets.append(target[i])

# 如果收集到的错误样本数量达到了指定的批量大小,则进行优化
if len(incorrect_data) >= batch_size:
print("optimizing...")
incorrect_data = torch.stack(incorrect_data)[:batch_size]
incorrect_targets = torch.tensor(incorrect_targets, dtype=torch.long, device=device)[:batch_size]
optimizer.zero_grad()
outputs = model(incorrect_data)
loss = criterion(outputs, incorrect_targets)
loss.backward()
optimizer.step()
# 重新初始化incorrect_data和incorrect_targets,以便于下次收集
incorrect_data = []
incorrect_targets = []

# main
data_dir = 'Dataset_TA_'
X, y = load_data(data_dir)

X = torch.tensor(X).permute(0, 2, 1)
label_encoder = LabelEncoder()
y_encoded = label_encoder.fit_transform(y)

# split dataset
X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.2, random_state=42)

# to tensor
X_train_tensor = torch.tensor(X_train, dtype=torch.float32).to(device)
y_train_tensor = torch.tensor(y_train, dtype=torch.long).to(device)
X_test_tensor = torch.tensor(X_test, dtype=torch.float32).to(device)
y_test_tensor = torch.tensor(y_test, dtype=torch.long).to(device)

# loading
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_dataset = TensorDataset(X_test_tensor, y_test_tensor)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)

# init
crnn_model = CRNN(num_classes=len(np.unique(y)))
crnn_model = crnn_model.to(device)
crnn_svm_model = CRNN_SVM(crnn_model)

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(crnn_model.parameters(), lr=learning_rate, weight_decay=0.01)
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=1000, verbose=True)

# train CRNN
best_acc = 0
for epoch in range(num_epochs):
crnn_model.train()
total_loss = 0
correct_train = 0
total_train = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
outputs = crnn_model(data)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
total_loss += loss.item()

_, predicted = torch.max(outputs.data, 1)
total_train += target.size(0)
correct_train += (predicted == target).sum().item()

# evaluate in val data
crnn_model.eval()
correct_val = 0
total_val = 0
val_loss = 0
all_preds = []
all_true = []
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
outputs = crnn_model(data)
loss = criterion(outputs, target)
val_loss += loss.item()

_, predicted = torch.max(outputs.data, 1)
total_val += target.size(0)
correct_val += (predicted == target).sum().item()

all_preds.extend(predicted.cpu().numpy())
all_true.extend(target.cpu().numpy())

train_accuracy = 100 * correct_train / total_train

val_accuracy = 100 * correct_val / total_val
f1 = f1_score(all_true, all_preds, average='weighted')

val_loss = val_loss / len(test_loader)

if epoch % 10 == 5:
interactive_learning(crnn_model, test_loader, optimizer, criterion)

if epoch % 10 == 0:
crnn_model.eval()
with torch.no_grad():
train_features = crnn_model(X_train_tensor)
test_features = crnn_model(X_test_tensor)

crnn_svm_model.fit_svm(train_features, y_train_tensor)

# evaluate combined model
crnn_svm_model.eval()
correct = 0
total = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
outputs = crnn_svm_model(data)
_, predicted = torch.max(outputs.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
print(f"Accuracy on test set: {100 * correct / total}%")

if 100 * correct / total > best_acc:
best_acc = 100 * correct / total
print(f"save model,best acc: {100 * correct / total} %")
torch.save(crnn_svm_model.state_dict(), 'CRNN_SVM_model_T.pth')

print(f"Epoch {epoch + 1}/{num_epochs}, Train Loss: {total_loss / len(train_loader):.4f}, "
f"Train Accuracy: {train_accuracy:.2f}%, Val Loss: {val_loss:.4f}, "
f"Val Accuracy: {val_accuracy:.2f}%, F1 Score: {f1:.4f}")

scheduler.step(total_loss)

# Train SVM
crnn_model.eval()
with torch.no_grad():
train_features = crnn_model(X_train_tensor)
test_features = crnn_model(X_test_tensor)

crnn_svm_model.fit_svm(train_features, y_train_tensor)

# evaluate combined model
crnn_svm_model.eval()
correct = 0
total = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
outputs = crnn_svm_model(data)
_, predicted = torch.max(outputs.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
print(f"Accuracy on test set: {100 * correct / total}%")

if 100 * correct / total > best_acc:
best_acc = 100 * correct / total
print(f"save model,best acc: {100 * correct / total} %")
torch.save(crnn_svm_model.state_dict(), 'CRNN_SVM_model_T.pth')
np.save('classes.npy', label_encoder.classes_)
writer.close()

训练结果

测试集准确度:0.7~0.8