1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
| import numpy as np import matplotlib.pyplot as plt import h5py from lr_utils import load_dataset
train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = load_dataset()
index = 50 plt.imshow(train_set_x_orig[index]) plt.show()
print("y=" + str(train_set_y[:,index]) + ", it's a " + classes[np.squeeze(train_set_y[:,index])].decode("utf-8") + "' picture")
m_train = train_set_y.shape[1] m_test = test_set_y.shape[1] num_px = train_set_x_orig.shape[1]
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0],-1).T test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0],-1).T print(train_set_x_flatten.shape) print(test_set_x_flatten.shape)
train_set_x = train_set_x_flatten / 255 test_set_x =test_set_x_flatten / 255
def sigmoid(z): "sigmoid(z) = 1 /(1 + e^(-z))" s = 1 / (1 + np.exp(-z)) return s
def init_with_zeros(dim): """ 初始化w为维度为(dim,1)0向量,初始化b为0 """ w = np.zeros(shape=(dim,1)) b = 0
assert(w.shape == (dim,1)) assert(isinstance(b, float) or isinstance(b, int))
return (w, b)
def propagate(w, b, X, Y): """ w 代表权重 b 代表偏差 X 数据集 维度(64*64*3, 训练数量) Y 输出,如果是猫就1,不是猫就0 维度(1, 训练数量) """
m = X.shape[1]
z = np.dot(w.T,X) + b A = sigmoid(z) cost = (-1 / m) * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))
dw = (1 / m) * np.dot(X, (A - Y).T) db = (1 / m) * np.sum(A - Y)
assert(dw.shape == w.shape) assert(db.dtype == float) cost = np.squeeze(cost) assert(cost.shape == ())
grads = { "dw": dw, "db": db }
return (grads, cost)
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False): """ w,b,X,Y含义同上 num_iterations 优化循环的迭代次数 learning_rate 梯度下降更新规则的学习率 print_cost 打印损失值 """
costs = []
for i in range(num_iterations): grads, cost = propagate(w, b, X, Y)
dw = grads["dw"] db = grads["db"]
w = w - learning_rate * dw b = b - learning_rate * db
if i % 100 == 0: costs.append(cost) if (print_cost) and (i % 100 == 0): print("迭代的次数: %i , 误差值: %f" % (i, cost))
params = { "w" : w, "b" : b }
grads = { "dw": dw, "db": db } return (params, grads, costs)
def predict(w, b, X): """ 然后就是用逻辑回归参数来预测标签是0还是1了 """
m = X.shape[1] Y_prediction = np.zeros((1,m)) print("reshape前:" + str(w.shape)) w = w.reshape(X.shape[0], 1) print("reshape后:" + str(w.shape)) z = np.dot(w.T, X) + b A = sigmoid(z) for i in range(A.shape[1]): if A[0, i] > 0.5: Y_prediction[0, i] = 1 else: Y_prediction[0, i] = 0
assert(Y_prediction.shape == (1,m))
return Y_prediction
def model(X_train, Y_train, X_test, Y_test, num_iterations=2000, learning_rate=0.5, print_cost=False): """ 通过调用之前实现的函数来构建逻辑回归模型
参数: X_train - numpy的数组,维度为(num_px * num_px * 3,m_train)的训练集 Y_train - numpy的数组,维度为(1,m_train)(矢量)的训练标签集 X_test - numpy的数组,维度为(num_px * num_px * 3,m_test)的测试集 Y_test - numpy的数组,维度为(1,m_test)的(向量)的测试标签集 num_iterations - 表示用于优化参数的迭代次数的超参数 learning_rate - 表示optimize()更新规则中使用的学习速率的超参数 print_cost - 设置为true以每100次迭代打印成本
返回: d - 包含有关模型信息的字典。 """
w, b = init_with_zeros(X_train.shape[0])
parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)
w, b = parameters["w"], parameters["b"]
Y_prediction_test = predict(w, b, X_test) Y_prediction_train = predict(w, b, X_train)
print("训练集准确性:", format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100), "%") print("测试集准确性:", format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100), "%")
d = { "costs": costs, "Y_prediction_test": Y_prediction_test, "Y_prediciton_train": Y_prediction_train, "w": w, "b": b, "learning_rate": learning_rate, "num_iterations": num_iterations} return d
d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)
costs = np.squeeze(d['costs']) plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(d["learning_rate"])) plt.show()
|